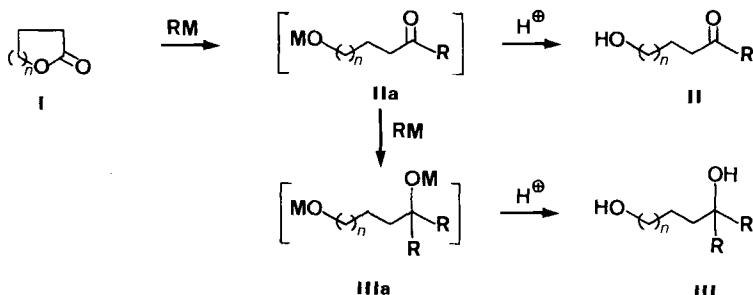


173. β -Cleavage of Bis(homoallylic) Potassium Alkoxides. Preparation of 3-Hydroxypropyl and 4-Hydroxybutyl Propenyl Ketones from γ - and δ -Lactones. Synthesis of (\pm)-Rose Oxide

by Roger L. Snowden*, Simon M. Linder, Bernard L. Muller, and Karl H. Schulte-Elte

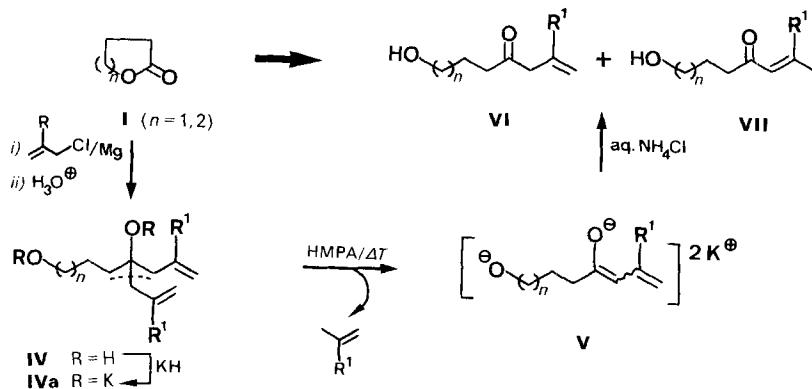
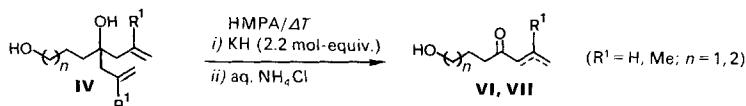

Firmenich SA, Research Laboratories, CH-1211 Geneva 8

(28.VIII.87)

Starting from γ - and δ -lactones **I-3**, a two-step preparation of 3-hydroxypropyl and 4-hydroxybutyl propenyl ketones **10-18** is described, involving as the key step the β -cleavage of the bis(homoallylic) potassium alkoxides **4a-9a**. This novel methodology is illustrated by a short synthesis of (\pm)-rose oxide (**20**).

Introduction. – The direct preparation of a γ -hydroxy ketone **II** ($n = 1$) or a δ -hydroxy ketone **II** ($n = 2$) by the mono-addition of an organometallic reagent RM (M = Li, MgX) to a lactone **I** ($n = 1, 2$) is generally inefficient due to further rapid addition to the intermediate metaloxy ketone **IIa**, which leads to diol **III** after protonation of the dialkoxide **IIIa** (cf. Scheme 1)¹). We now present an indirect solution to this synthetic problem for allylic organometallic reagents by describing a two-step procedure for the preparation of 3-hydroxypropyl and 4-hydroxybutyl propenyl ketones from γ - and δ -lactones, respectively. To illustrate this novel homologation methodology, we also report a synthesis of racemic rose oxide (**20**)², a naturally occurring compound [3] which has incited much synthetic work because of its extensive use in perfumery [4].

Scheme 1

Results and Discussion. – β -Cleavage of Bis(homoallylic) Potassium Alkoxides **4a-9a**. In the preceding paper [5], we described an efficient two-step preparation of propenyl ketones from carboxylic esters which took advantage of the facile β -cleavage of bis(ho-

¹) For various solutions to this general synthetic problem, see [1] and ref. cit. therein.

²) For a preliminary communication of this strategy for the synthesis of **20**, see [2].

Scheme 2

Table 1. β -Cleavage of Bis(homoallylic) Potassium Alkoxides 4a-9a

Entry	Diol	Yield [%]	Reaction cond.	Products ^a)	Yield [%]
1	4	85 ^b)	100°/2 h	3 10	31
2	5	69 ^b)	100°/2 h	12 11 12 (3.5:1)	67
3	6	68 ^c)	90°/3 h	1.5 13	62
4	7	87 ^c)	75°/3 h	6 14 15 (4:1)	68
5	8	65 ^d)	95°/2 h	1 16	67
6	9	82 ^d)	65°/3 h	1 17 18 (8:1)	76

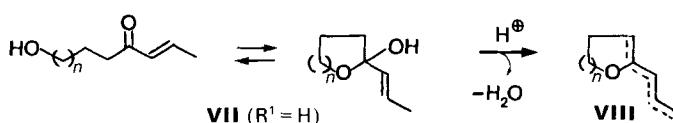
^a) Products isolated by column chromatography on silica gel (cf. Exper. Part); compositions of tautomeric mixtures measured at 25°; in CDCl_3 solution, by $^1\text{H-NMR}$ (360 MHz) spectroscopy. ^b) Yield from γ -butyrolactone (1). ^c) Yield from δ -valerolactone (2). ^d) Yield from 3-methyl- δ -valerolactone (3).

moallylic) potassium alkoxides in dipolar aprotic solvents. It was thus envisaged that the same strategy could be employed for an analogous transformation of lactones **I** ($n = 1, 2$) via diols **IV** to hydroxyalkyl 2- and 1-propenyl ketones **VI** and **VII**, respectively (cf. Scheme 2).

Accordingly, the six diols **4–9** were prepared in 65–87% yield (cf. Table 1) by reaction of commercially available γ -butyrolactone (**1**), δ -valerolactone (**2**) and 3-methyl- δ -valerolactone (**3**) with an excess of either allylmagnesium chloride or methallylmagnesium chloride, formed *in situ* in THF, using *Barbier* conditions³). Each of these diols was then treated with KH (2.2 mol-equiv.) in hexamethylphosphoric triamide (HMPA) at 25°, and the resulting HMPA solutions of the dipotassium dialkoxides **4a–9a** were then heated under the reaction conditions indicated (cf. Table 1). Aqueous workup (aq. NH₄Cl solution), extraction with Et₂O, and column chromatography on silica gel resulted in the isolation of the products **10–18** in 31–81% yield. Compounds **10, 11, 13, 14, 16**, and **17** are tautomeric mixtures of β,γ -unsaturated hydroxy ketones and lactols whose equilibrium composition at 25° in CDCl₃ solution was conveniently measured by ¹H-NMR (360 MHz) spectroscopy. For **10, 11, 13**, and **14**, the hydroxy-ketone tautomer is energetically favoured, whereas the introduction of a Me group in **16** and **17** results in a reversal of this situation, and it is the lactol tautomer which is relatively more stable. As previously observed in analogous systems [5], the formation of β,γ -unsaturated ketones **VI** is preferred with respect to their α,β -unsaturated isomers **VII**. This result is kinetically controlled and reflects a site-selective α -protonation of the intermediate potassium dienolate **V** formed from the β -cleavage of the bis(homoallylic) alkoxide **IVa** (cf. Scheme 2). It is interesting to note the absence of the α,β -unsaturated isomers of **10, 13**, and **16** amongst the isolated products (cf. Entries 1, 3, and 5, Table 1). This result may be the consequence of an exclusive α -protonation of **V**, but is more likely due to the relative instability of these putative products⁴). The only moderate yields of isolated products in these cases, especially for **10** (cf. Entry 1), lend support to this latter hypothesis.

Because the transformation of **9** to afford **17** and **18** was of special interest in the context of a projected synthesis of rose oxide (**20**; *vide infra*), it was decided to investigate

Table 2. β -Cleavage of **9a**

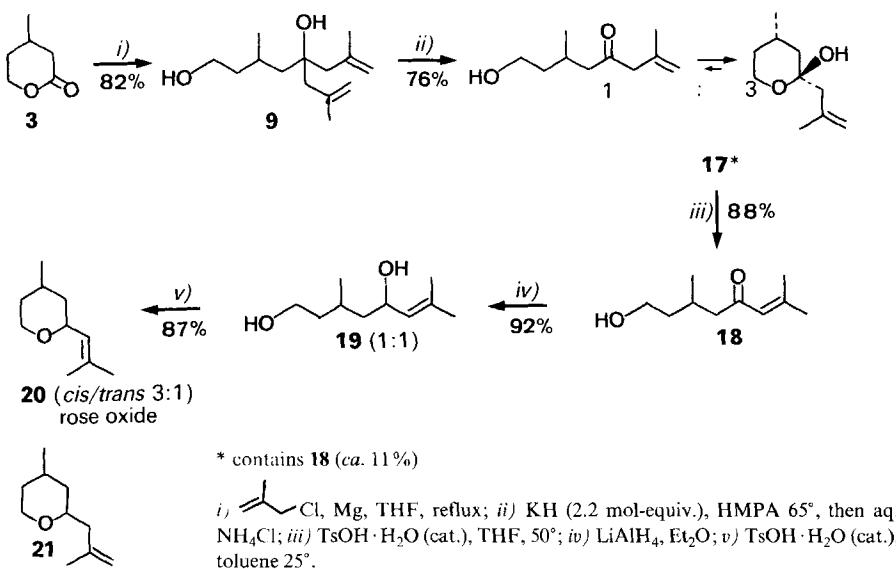

Entry	Reaction cond. ^{a)}	17	18	Yield [%]
1 ^{b)}	KH, HMPA, 65°	89	11	76
2 ^{b)}	<i>t</i> -BuOK, DMF, 80°	86	14	81
3 ^{c)}	NMP, 210°	6	94	72
4 ^{c)}	400° (gas phase)	95	5	67

^{a)} For details, see *Exper. Part.*

^{b)} Products isolated after aqueous workup.

^{c)} Products isolated by distillation *i.v.*

³⁾ Recent studies [6] indicate that the *Barbier* reaction does not necessarily involve the *in-situ* formation of an organometallic compound but may occur *via* a radical-anion intermediate.



⁴⁾ A possible decomposition pathway for **VII** ($R' = H$) may involve acid-catalysed dehydration to dienol ethers **VIII**.

alternative conditions for the β -cleavage of its dipotassium dialkoxide **9a**. The results of four experiments are summarised in *Table 2*. Treatment of **9** with *t*-BuOK (2.2 mol-equiv.) in dimethylformamide (DMF) at 80° [2] (*cf. Entry 2*) gave essentially the same result as the use of KH in HMPA (*cf. Entry 1*) as did the replacement of DMF by other dipolar aprotic solvents such as HMPA or *N*-methylpyrrolidone (NMP). In addition, the thermal *retro-ene* reaction [7] of **9** was studied, either in the liquid phase at 210° with NMP as solvent⁵) (*cf. Entry 3*) or in the gas phase at 400° (*cf. Entry 4*). In the former experiment, the *retro-ene* reaction was followed by essentially complete equilibration of **17** to **18**, whereas the latter pyrolysis experiment afforded **17** as expected, with almost no observed equilibration.

Synthesis of (±)-Rose Oxide (20). Scheme 3 outlines a short synthesis of (±)-rose oxide (20) starting from 3-methyl- δ -valerolactone (3)⁶. The two-step transformation of 3 to a 8:1 mixture 17/18 (overall yield 61 %) has already been described (*cf. Table 1*). Equilibration of this mixture with a catalytic amount of TsOH in THF at 50° led smoothly to 18 in 88 % yield. Reduction with LiAlH₄ in Et₂O afforded the diol 19 (1:1 diastereoisomeric mixture) which underwent acid-catalysed ring closure (TsOH/toluene, 25°) to furnish 20 (*cis/trans* 3:1) in 87 % yield, identical in all respects with an authentic sample.

Scheme 3

⁵⁾ For the use of NMP as solvent in the oxy-Cope rearrangement, see [8].

⁶⁾ For a stereoselective synthesis of *trans*-**20** from **3**, see [9].

7) Acid-catalysed ring closure of **19** to **20** (*cis/trans* 4:1) may also be effected using KHSO_4 at 50–60°/12 Torr (76% yield) [2]. In contrast, treatment of **19** with a catalytic amount of $\text{TsOH} \cdot \text{H}_2\text{O}$ in refluxing toluene afforded substantial amounts of *3,4,5,6-tetrahydro-4-methyl-2-(2'-methyl-2'-propenyl)-2H-pyran* (**21**; *cis/trans* ca. 10:1). *cis*-**21**: $^1\text{H-NMR}$: 0.93 (*d*, J = 7, 3 H); 1.75 (*s*, 3 H); 0.80–1.80 (5 H); 2.09 (*dd*, J = 14, 6, 1 H); 2.27 (*dd*, J = 14, 8, 1 H); 3.42 (*ddd*, J = 11, 9, 2, 1 H); 3.93–4.03 (2 H); 4.75 (*s*, 1 H); 4.80 (*s*, 1 H). MS : 154 (0, M^+), 99 (100), 81 (25), 69 (15), 55 (25), 43 (49). *trans*-**21**: $^1\text{H-NMR}$: 1.05 (*d*, J = 7, 3 H); 1.75 (*s*, 3 H); 0.80–2.40 (7 H); 3.60–3.85 (3 H); 4.75 (*s*, 1 H); 4.80 (*s*, 1 H). MS : 154 (0, M^+), 99 (100), 81 (25), 55 (26), 43 (58).

Experimental Part

General. See [5]. $^1\text{H-NMR}$ spectra: recorded at 360 MHz unless otherwise indicated.

General Procedure for the Preparation of Diols 4–9. – A soln. of either allyl chloride or methallyl chloride (0.25 mol) and γ -butyrolactone (1), δ -valerolactone (2), or 3-methyl- δ -valerolactone⁸⁾ (3; 0.1 mol) in THF (120 ml) was added dropwise to a stirred slurry of Mg turnings (0.24 mol) in THF (20 ml) under N_2 at such a rate as to maintain a gentle reflux. After the addition (*ca.* 1 h), the mixture was refluxed until TLC indicated completion of the reaction (1–3 h). The mixture was then poured into cold sat. aq. NH_4Cl soln., the aq. phase extracted with Et_2O (4 \times 50 ml), and the combined org. phase washed once with H_2O , 4 times with sat. aq. NaCl soln., dried (Na_2SO_4), and evaporated. Fractional distillation *i.v.* afforded diols 4, 6, 8, and 9 as colourless oils and 5 and 7 as white crystals.

4-(2'-Propenyl)-6-hepten-1,4-diol (4) (85% yield from 1). B.p. 96–97°/0.04 Torr ([10]: 118°/2 Torr; [11]: 75–78°/0.001 Torr). R_f (AcOEt) 0.49. IR: 3320 (br.), 3060, 2910, 1638, 1438, 990, 905. $^1\text{H-NMR}$ (60 MHz, $+\text{D}_2\text{O}$): 1.67 (4 H); 2.23 (*d*, J = 7, 4 H); 3.58 (*m*, 2 H); 5.04 (br. *d*, J = 18, 2 H); 5.08 (*dd*, J = 11, 2, 2 H); 5.83 (*m*, 2 H). MS: 170 (0, M^+), 111 (62), 91 (21), 87 (40), 79 (18), 69 (100), 55 (18), 41 (79).

6-Methyl-4-(2'-methyl-2'-propenyl)-6-hepten-1,4-diol (5) (69% yield from 1). B.p. 97–98°/0.03 Torr. M.p. 59–60°. R_f (AcOEt) 0.61. IR (CDCl₃): 3350 (br.), 3060, 2900, 1638, 1436, 1360, 1040. $^1\text{H-NMR}$ (60 MHz, $+\text{D}_2\text{O}$): 1.60 (4 H); 1.82 (*s*, 6 H); 2.23 (*s*, 4 H); 3.57 (*m*, 2 H); 4.76 (2 H); 4.90 (2 H). MS: 198 (0, M^+), 125 (18), 87 (100), 83 (22), 69 (26), 55 (57), 41 (27).

5-(2'-Propenyl)-7-octen-1,5-diol (6) (68% yield from 2). B.p. 98–99°/0.03 Torr. R_f (AcOEt) 0.49. IR: 3320 (br.), 3060, 2900, 1638, 1430, 990, 904. $^1\text{H-NMR}$ (60 MHz, $+\text{D}_2\text{O}$): 1.46 (6 H); 2.23 (*d*, J = 7, 4 H); 3.58 (*m*, 2 H); 5.05 (br. *d*, J = 18, 2 H); 5.10 (*dd*, J = 11, 2, 2 H); 5.82 (*m*, 2 H). MS: 184 (0, M^+), 143 (9), 125 (55), 101 (27), 83 (35), 69 (100), 55 (78), 41 (81).

7-Methyl-5-(2'-methyl-2'-propenyl)-7-octen-1,5-diol (7) (87% yield from 2). B.p. 99–100°/0.04 Torr. M.p. 35–36°. R_f (AcOEt) 0.65. IR: 3350 (br.), 3060, 2900, 1638, 1440, 1372, 900. $^1\text{H-NMR}$ (60 MHz, $+\text{D}_2\text{O}$): 1.50 (6 H); 1.84 (6 H); 2.22 (*s*, 4 H); 3.63 (*m*, 2 H); 4.78 (2 H); 4.94 (2 H). MS: 212 (0, M^+), 139 (29), 109 (100), 98 (17), 83 (30), 67 (42).

3-Methyl-5-(2'-propenyl)-7-octen-1,5-diol (8) (65% yield from 3). B.p. 96–97°/0.03 Torr. R_f (AcOEt) 0.61. IR: 3320 (br.), 3060, 2900, 1636, 1430, 1050, 988, 906. $^1\text{H-NMR}$ (60 MHz, $+\text{D}_2\text{O}$): 0.98 (*d*, J = 7, 3 H); 1.00–2.20 (5 H); 2.26 (*dd*, J = 7, 2, 4 H); 3.64 (*t*, J = 7, 2 H); 5.06 (br. *d*, J = 18, 2 H); 5.10 (br. *d*, J = 11, 2, 2 H); 5.83 (*m*, 2 H). MS: 198 (0, M^+), 139 (38), 91 (21), 79 (23), 69 (100), 55 (32), 41 (69).

3,7-Dimethyl-5-(2'-methyl-2'-propenyl)-7-octen-1,5-diol (9) (82% yield from 3). B.p. 103–104°/0.05 Torr. R_f (AcOEt) 0.73. IR: 3350 (br.), 3060, 2910, 1638, 1440, 1368, 1052, 882. $^1\text{H-NMR}$ (60 MHz, $+\text{D}_2\text{O}$): 1.01 (*d*, J = 7, 3 H); 1.84 (*s*, 6 H); 2.23 (*s*, 4 H); 1.00–2.40 (5 H); 3.66 (*t*, J = 7, 2 H); 4.74 (2 H); 4.92 (2 H). MS: 226 (0, M^+), 115 (100), 97 (23), 83 (26), 73 (55), 69 (89), 55 (85).

General Procedure for the β -Cleavage of the Dipotassium Dialkoxides 4a–9a. – A soln. of the corresponding diol (8 mmol) in HMPA (10 ml) was added dropwise within 20 min to a stirred slurry of KH (20 mmol) in HMPA (25 ml) at r.t. under N_2 . The mixture was stirred at r.t. for further 20 min and then heated⁹⁾, until TLC (after quenching of an aliquot with sat. aq. NH_4Cl soln. followed by extraction with Et_2O) indicated completion of the reaction. The cooled mixture was then poured cautiously into cold sat. aq. NH_4Cl soln. (150 ml) and extracted with Et_2O (4 \times 50 ml). The combined org. phase was washed with H_2O , sat. aq. NaHCO_3 and sat. aq. NaCl soln., dried (Na_2SO_4), concentrated at atmospheric pressure, and the residual oil purified by column chromatography (silica gel (50 g), cyclohexane/AcOEt 1:1). Distillation *i.v.* afforded the products described below.

7-Hydroxy-1-hepten-4-one and 2,3,4,5-Tetrahydro-2-(2'-propenyl)furan-2-ol (3:1 tautomeric mixture; **10**) (31% yield from 4). B.p. (bulb-to-bulb distillation) 50–60°/0.04 Torr. R_f (cyclohexane/AcOEt 3:2) 0.22. IR: 3400 (br.), 3060, 2920, 2870, 1700, 1638, 1400, 1040, 920. $^1\text{H-NMR}$ ($+\text{D}_2\text{O}$): hydroxy ketone: 1.84 (*tt*, J = 7, 7, 2 H); 2.60 (*t*, J = 7, 2 H); 3.21 (*d*, J = 7, 2 H); 3.64 (*t*, J = 6.5, 2 H); 5.15 (br. *d*, J = 18, 1 H); 5.19 (br. *d*, J = 11, 1 H); 5.92 (*m*, 1 H); lactol: 1.75–2.15 (4 H); 2.51 (*m*, 2 H); 3.89 (*m*, 1 H); 4.04 (*m*, 1 H); 5.10–5.25 (*m*, 2 H); 5.85–6.00 (*m*, 1 H). MS: 128 (0, M^+), 111 (53), 84 (30), 69 (100), 41 (28).

7-Hydroxy-2-methyl-1-hepten-4-one and 2,3,4,5-Tetrahydro-2-(2'-methyl-2'-propenyl)furan-2-ol (12:1 tautomeric mixture; **11**) (52% yield from 5). B.p. (bulb-to-bulb distillation) 90–120°/0.03 Torr. R_f (cyclohexane/AcOEt 3:2) 0.14. IR: 3400 (br.), 1700, 1612, 1440, 1370, 1040, 890. $^1\text{H-NMR}$ ($+\text{D}_2\text{O}$): hydroxy ketone: 1.75 (*s*, 3 H); 1.84

⁸⁾ Obtained from BASF AG, Ludwigshafen.

⁹⁾ For the individual reaction conditions, *cf. Table 1*.

(*t*, *J* = 7, 7, 2 H); 2.61 (*t*, *J* = 7, 2 H); 3.14 (*s*, 2 H); 3.63 (*t*, *J* = 6, 2 H); 4.83 (*s*, 1 H); 4.95 (*s*, 1 H); lactol: 1.70–2.00 (7 H); 2.44 (*d*, *J* = 14, 1 H); 2.52 (*d*, *J* = 14, 1 H); 3.89 (*m*, 1 H); 4.02 (*m*, 1 H); 4.74 (br. *s*, 1 H); 4.84 (br. *s*, 1 H). MS: 142 (0, M^+), 83 (100).

Also isolated was *7-hydroxy-2-methyl-2-hepten-4-one* (**12**) (15% yield from **5**). B.p. (bulb-to-bulb distillation) 90–120°/0.03 Torr. R_f (cyclohexane/AcOEt 3:2) 0.12. IR: 3400 (br.), 1680. $^1\text{H-NMR}$ (+D₂O): 1.82 (*tt*, *J* = 7, 7, 2 H); 1.89 (*s*, 3 H); 2.15 (*s*, 3 H); 2.58 (*t*, *J* = 7, 2 H); 3.64 (*t*, *J* = 6, 2 H); 6.10 (br. *s*, 1 H). MS: 142 (0, M^+), 83 (100).

8-Hydroxy-1-octen-4-one and 3,4,5,6-Tetrahydro-2-(2'-propenyl)-2H-pyran-2-ol (1.5:1 tautomeric mixture; **13**) (62% yield from **6**). B.p. (bulb-to-bulb distillation) 100–125°/0.03 Torr. R_f (cyclohexane/AcOEt 3:2) 0.22. IR: 3400 (br.), 3070, 2850, 1700, 1638, 1400, 1036, 986, 912. $^1\text{H-NMR}$ (+D₂O): hydroxy ketone: 1.55 (*m*, 2 H); 1.67 (*m*, 2 H); 2.50 (*t*, *J* = 7, 2 H); 3.18 (*d*, *J* = 6.5, 2 H); 3.62 (*t*, *J* = 7, 2 H); 5.10–5.24 (2 H); 5.93 (1 H); lactol: 1.45–1.95 (6 H); 2.26 (*dd*, *J* = 14, 8, 1 H); 2.44 (*dd*, *J* = 14, 6, 1 H); 3.63 (*m*, 1 H); 3.93 (*m*, 1 H); 5.10–5.24 (2 H); 5.91 (*m*, 1 H). MS: 142 (0, M^+), 125 (40), 83 (15), 69 (100), 55 (36), 41 (26).

8-Hydroxy-2-methyl-1-octen-4-one and 3,4,5,6-Tetrahydro-2-(2'-methyl-2'-propenyl)-2H-pyran-2-ol (6:1 tautomeric mixture; **14**) (54% yield from **7**). B.p. 110–120°/0.03 Torr. R_f (cyclohexane/AcOEt 3:2) 0.18. IR: 3400 (br.), 3060, 2900, 1700, 1640, 1440, 1400, 1370, 1050, 890. $^1\text{H-NMR}$ (+D₂O): hydroxy ketone: 1.56 (*m*, 2 H); 1.67 (*m*, 2 H); 1.74 (*s*, 3 H); 2.52 (*t*, *J* = 7, 2 H); 3.11 (*s*, 2 H); 3.61 (*t*, *J* = 7, 2 H); 4.82 (br. *s*, 1 H); 4.94 (br. *s*, 1 H); lactol: 1.50–1.90 (6 H); 1.85 (*s*, 3 H); 2.26 (*d*, *J* = 14, 1 H); 2.36 (*d*, *J* = 14, 1 H); 3.62 (*m*, 1 H); 3.92 (*m*, 1 H); 4.81 (br. *s*, 1 H); 4.98 (br. *s*, 1 H). MS: 156 (0, M^+), 138 (11), 123 (29), 101 (78), 83 (88), 55 (100).

Also isolated was *8-hydroxy-2-methyl-2-octen-4-one* (**15**) (14% yield from **7**). B.p. (bulb-to-bulb distillation) 120–130°/0.02 Torr. R_f (cyclohexane/AcOEt 3:2) 0.14. IR: 3400 (br.), 2900, 1675, 1610, 1440, 1374, 1220, 1110, 1025, 840. $^1\text{H-NMR}$ (+D₂O): 1.56 (*m*, 2 H); 1.68 (*m*, 2 H); 1.89 (*s*, 3 H); 2.14 (*s*, 3 H); 2.46 (*t*, *J* = 7, 2 H); 3.61 (*t*, *J* = 7, 2 H); 6.08 (br. *s*, 1 H). MS: 156 (0, M^+), 138 (5), 109 (8), 83 (100), 69 (10), 55 (38).

(2RS,4RS)-3,4,5,6-Tetrahydro-4-methyl-2-(2'-propenyl)-2H-pyran-2-ol and 8-Hydroxy-6-methyl-1-octen-4-one (6.5:1 tautomeric mixture; **16**) (67% yield from **8**). B.p. (bulb-to-bulb distillation) 50–60°/0.04 Torr. R_f (cyclohexane/AcOEt 3:2) 0.42. IR: 3400 (br.), 3065, 2925, 1704w, 1640, 1170, 1118, 980, 910, 870. $^1\text{H-NMR}$ (+D₂O): lactol: 0.91 (*d*, *J* = 7, 3 H); 1.12 (*dd*, *J* = 12.5, 12.5, 1 H); 1.18 (*dddd*, *J* = 12.5, 12.5, 12.5, 4.5, 1 H); 1.56 (br. *d*, *J* = 12.5, 1 H); 1.71 (br. *d*, *J* = 12.5, 1 H); 1.97 (*m*, 1 H); 2.27 (*dd*, *J* = 14, 8, 1 H); 2.43 (*dd*, *J* = 14, 6.5, 1 H); 3.65 (*m*, 1 H); 3.92 (*m*, 1 H); 5.17 (br. *d*, *J* = 18, 1 H); 5.20 (br. *d*, *J* = 11, 1 H); 5.90 (*m*, 1 H); hydroxy ketone: 0.95 (*d*, *J* = 7, 3 H); 1.10–1.25 (1 H); 1.49 (*dt*, *J* = 7, 7, 2 H); 2.20–2.50 (2 H); 3.17 (*d*, *J* = 7, 2 H); 3.60–3.70 (2 H); 5.10–5.25 (2 H); 5.92 (*m*, 1 H). MS: 156 (0, M^+), 138 (4), 123 (11), 115 (92), 97 (30), 87 (20), 73 (85), 69 (100), 55 (47), 41 (39).

(2RS,4SR)-3,4,5,6-Tetrahydro-4-methyl-2-(2'-methyl-2'-propenyl)-2H-pyran-2-ol and 8-Hydroxy-2,6-dimethyl-1-octen-4-one (3:1 tautomeric mixture; **17**) (68% yield from **9**). B.p. (bulb-to-bulb distillation) 70–90°/0.03 Torr. R_f (cyclohexane/AcOEt 3:2) 0.42. IR: 3400 (br.), 3060, 2850, 1700w, 1640, 1440, 1220, 1180, 1030, 980, 886, 856. $^1\text{H-NMR}$ (+D₂O): lactol: 0.90 (*d*, *J* = 7, 3 H); 1.13 (*dd*, *J* = 12.5, 12.5, 1 H); 1.17 (*dddd*, *J* = 12.5, 12.5, 12.5, 4.5, 1 H); 1.55 (br. *d*, *J* = 14, 1 H); 1.70 (br. *d*, *J* = 14, 1 H); 1.86 (*s*, 3 H); 1.99 (*m*, 1 H); 2.28 (*d*, *J* = 12.5, 1 H); 2.35 (*d*, *J* = 12.5, 1 H); 3.63 (*m*, 1 H); 3.90 (*m*, 1 H); 4.80 (br. *s*, 1 H); 4.98 (br. *s*, 1 H); hydroxy ketone: 0.94 (*d*, *J* = 7, 3 H); 1.10–1.25 (1 H); 1.49 (*dt*, *J* = 7, 7, 2 H); 1.75 (*s*, 3 H); 2.37 (*dd*, *J* = 17, 7, 1 H); 2.49 (*dd*, *J* = 17, 7, 1 H); 3.10 (*s*, 2 H); 3.63 (*t*, *J* = 6, 2 H); 4.82 (br. *s*, 1 H); 4.95 (br. *s*, 1 H). MS: 170 (0, M^+), 137 (18), 115 (100), 97 (24), 83 (18), 69 (72), 55 (36), 40 (50).

Also isolated was *8-hydroxy-2,6-dimethyl-2-octen-4-one* (**18**) (8% yield from **9**). B.p. (bulb-to-bulb distillation) 90–120°/0.01 Torr. R_f (cyclohexane/AcOEt 3:2) 0.26. R_f (AcOEt) 0.60. IR: 3400 (br.), 2900, 1670, 1610, 1440, 1370, 1040. $^1\text{H-NMR}$ (+D₂O): 0.95 (*d*, *J* = 7, 3 H); 1.50 (*m*, 2 H); 1.89 (*s*, 3 H); 2.15 (*s*, 3 H); 2.22 (*m*, 1 H); 2.31 (*dd*, *J* = 16, 6.5, 1 H); 2.43 (*dd*, *J* = 16, 7, 1 H); 3.62 (*m*, 2 H); 6.08 (*s*, 1 H). MS: 170 (0, M^+), 152 (2), 137 (5), 98 (8), 83 (100), 55 (41).

Alternative Procedures for the Conversion of 9 to 17 and 18. – *t*-BuOK/DMF, 80°. A mixture of **9** (2.26 g, 0.01 mol) and *t*-BuOK (2.5 g, 0.022 mol) in DMF (20 ml) was heated at 80° for 3 h under N₂. The cooled mixture was poured into cold aq. NH₄Cl soln. and extracted with Et₂O (4 × 50 ml). The combined org. phase was washed with sat. aq. NaHCO₃ and sat. aq. NaCl soln., dried (Na₂SO₄), concentrated, and distilled *i.v.* (bulb-to-bulb distillation: 90–120°/0.01 Torr) to afford a pale-yellow oil (1.5 g) which consisted of a 6:1 mixture (purity 92%) **17/18** (81% yield).

N-Methylpyrrolidone (NMP)/210°. A soln. of **9** (10 g, 0.044 mol) in NMP (20 ml) was heated in a sealed Pyrex tube at 210° for 1.5 h. Fractional distillation *i.v.* afforded a pale-yellow oil (6.1 g) which consisted of a 15:1 mixture (purity 88%) **18/17** (72% yield).

400° (Gas Phase). Alcohol **9** (10 g, 0.044 mmol) containing pyridine (0.5 g) was pumped at 1 ml/min through a 5 m Pyrex pyrolysis column (diameter 5 mm) under a N₂ stream. Distillation *i.v.* of the pyrolysate afforded a pale-yellow oil (5.6 g) which consisted of a 19:1 mixture (purity 90%) **17/18** (67% yield).

Acid-Catalysed Equilibration of 17 to 18. - A crude 8:1 mixture **17/18** (1.7 g, 10 mmol) in THF (70 ml) containing TsOH·H₂O (200 mg) was stirred at r.t. for 18 h and then heated at 50° for 2 h. The cooled mixture was diluted with Et₂O (50 ml) and washed with sat. aq. NaHCO₃ and sat. aq. NaCl soln. The org. phase was then dried (Na₂SO₄), concentrated *i.v.*, and the residual oil purified by column chromatography (silica gel (100 g), cyclohexane/AcOEt 7:3) to afford **18** as a colourless oil (1.5 g, 88%). *Vide supra* for physical and spectral properties.

Conversion of 18 to Rose Oxide (20). - *3,7-Dimethyl-6-octen-1,5-diol* (**19**; 1:1 diastereoisomeric mixture). A soln. of **18** (850 mg, 5 mmol) in Et₂O (10 ml) was added dropwise, within 15 min to a stirred slurry of LiAlH₄ (190 mg, 5 mmol) in Et₂O (10 ml) at 25° under N₂. After further 45 min at 30°, the mixture was cooled and H₂O (0.2 ml) added cautiously. Subsequent addition of 15% aq. NaOH soln. (0.2 ml) and H₂O (0.6 ml) followed by filtration (*Hyflo*) of the white slurry afforded an ethereal solution which was evaporated. The residual oil was purified by column chromatography (silica gel (100 g), AcOEt) to afford **19** as a viscous, colourless oil (700 mg, 92%). B.p. (bulb-to-bulb distillation) 160–180°/0.04 Torr ([12]: 132–133°/3 Torr). R_f (AcOEt) 0.38, 0.41. IR: 3300 (br.), 2800, 1440, 1366, 1000, 838. ¹H-NMR (+D₂O): 0.92, 0.96 (2d, J = 7, 3 H); 0.85–2.00 (5 H); 1.69–1.72 (2 br. s, 6 H); 3.68 (m, 2 H); 4.45 (m, 1 H); 5.15, 5.18 (2d, J = 7, 1 H). MS: 172 (0, M^{+}), 154 (10), 139 (100), 83 (32), 69 (72), 55 (30), 41 (22).

3,4,5,6-Tetrahydro-4-methyl-2-(2'-methyl-1'-propenyl)-2H-pyran (= Rose Oxide; **20**; *cis/trans* 3:1). A soln. of **19** (1:1 diastereoisomeric mixture; 516 mg, 3 mmol) in toluene (8 ml) containing TsOH·H₂O (100 mg) was stirred at 25° for 2 h under N₂. The org. solution was washed with sat. aq. NaHCO₃ and sat. aq. NaCl soln. and dried (Na₂SO₄). Concentration and distillation *i.v.* of the residual oil afforded **20** (*cis/trans* 3:1) as a colourless oil (400 mg, 87%). B.p. (bulb-to-bulb distillation) 100–120°/15 Torr ([4]: 70°/11 Torr).

Data of cis-20: R_f (CH₂Cl₂) 0.46. ¹H-NMR: 0.93 (d, J = 7, 3 H); 0.95–1.80 (5 H); 1.68 (s, 3 H); 1.72 (s, 3 H); 3.46 (ddd, J = 11, 9, 2, 1 H); 3.93–4.03 (2 H); 5.16 (d, J = 9, 1 H). MS: 154 (10, M^{+}), 139 (100), 84 (24), 69 (56), 55 (23), 41 (19).

Data of trans-20: R_f (CH₂Cl₂) 0.41. ¹H-NMR: 1.06 (d, J = 7, 3 H); 0.95–1.80 (4 H); 1.68 (s, 3 H); 1.72 (s, 3 H); 2.01 (m, 1 H); 3.71 (m, 2 H); 4.36 (ddd, J = 11, 9, 4, 1 H); 5.28 (d, J = 9, 1 H). MS: 154 (7, M^{+}), 139 (100), 83 (37), 69 (51), 55 (27), 41 (28).

REFERENCES

- [1] S. Cavicchioli, D. Savoia, C. Trombini, A. Umani-Ronchi, *J. Org. Chem.* **1984**, *49*, 1246; R. M. Betancourt de Perez, L. M. Fuentes, G. L. Larson, C. L. Barnes, M. J. Heeg, *ibid.* **1986**, *51*, 2039.
- [2] R. L. Snowden, B. L. Muller, K. H. Schulte-Elte, *Tetrahedron Lett.* **1982**, *23*, 335, to Firmenich SA, Eur. Pat. 71708 (prior. 24.7.1981).
- [3] D. Felix, A. Eschenmoser, K. Biemann, E. Palluy, M. Stoll, *Helv. Chim. Acta* **1961**, *44*, 598; Y.-R. Naves, D. Lamparsky, P. Ochsner, *Bull. Soc. Chim. Fr.* **1961**, 645.
- [4] G. Ohloff, E. Klein, G. O. Schenck, *Angew. Chem.* **1961**, *73*, 578; G. Ohloff, K. H. Schulte-Elte, B. Willhalm, *Helv. Chim. Acta* **1964**, *47*, 602; for reviews, see A. F. Thomas, in 'Total Synthesis of Natural Products', Ed. J. ApSimon, J. Wiley & Sons, Inc., New York, 1973, Vol. 2, p. 1; A. F. Thomas, Y. Bessière, *ibid.* 1981, Vol. 4, p. 451.
- [5] R. L. Snowden, S. M. Linder, B. L. Muller, K. H. Schulte-Elte, *Helv. Chim. Acta* **1987**, *70*, 1858.
- [6] G. Molle, P. Bauer, *J. Am. Chem. Soc.* **1982**, *104*, 3481.
- [7] H. M. R. Hoffmann, *Angew. Chem., Int. Ed.* **1969**, *8*, 556.
- [8] Y. Fujita, T. Onishi, T. Nishida, *J. Chem. Soc., Chem. Commun.* **1978**, 972.
- [9] T. Cohen, M.-T. Lin, *J. Am. Chem. Soc.* **1984**, *106*, 1130.
- [10] V. N. Belov, Yu. I. Tarnopols'kii, *Zh. Org. Khim.* **1965**, *1*, 634.
- [11] J. Barluenga, J. R. Fernandez, J. Florez, M. Yus, *Synthesis* **1983**, 736.
- [12] Y. R. Naves, P. Tullen, Swiss patent 414674 (30.12.1966) (*CA*: **1967**, *67*, 21815t).